Unveiling a new quantum frontier: Frequency-domain entanglement

Scientists have introduced a form of quantum entanglement known as frequency-domain photon number-path entanglement. This advance in quantum physics involves an innovative tool called a frequency beam splitter, which has ...

IRIS beamline at BESSY II gets a new nanospectroscopy end station

The IRIS infrared beamline at the BESSY II storage ring now offers a fourth option for characterizing materials, cells and even molecules on different length scales. The team has extended the IRIS beamline with an end station ...

A molecular fingerprint beyond the Nyquist frequency

Ultrashort pulses play a significant role in spectroscopic applications. Their broad spectral bandwidth enables simultaneous characterization of the sample at various frequencies, eliminating the need for repeated measurements ...

A shade closer to more efficient organic photovoltaics

Transparent solar cells will transform the look of infrastructure by enabling many more surfaces to become solar panels. Now, materials called non-fullerene acceptors that can intrinsically generate charges when exposed to ...

Making light 'feel' a magnetic field like an electron would

Unlike electrons, particles of light are uncharged, so they do not respond to magnetic fields. Despite this, researchers have now experimentally made light effectively "feel" a magnetic field within a complicated structure ...

Light stands still in a deformed crystal

AMOLF researchers, in collaboration with Delft University of Technology, have succeeded in bringing light waves to a halt by deforming the two-dimensional photonic crystal that contains them. The researchers show that even ...

page 1 from 2